环县玉米全膜双垄沟播"3414"肥效试验

陈彦峰1,杨子凡2,董博3,刘生瑞1

(1. 甘肃省环县农业技术推广中心,甘肃 环县 745700; 2. 甘肃农业大学资源与环境学院,甘肃 兰州 730070; 3. 甘肃省农业科学院,甘肃 兰州 730070)

摘要:在环县进行的玉米 "3414" 田间试验结果表明,当地玉米最大施肥量的 N、P、K 配施比例为 3.8: 2.5:1,最佳施肥量的 N、P、K 配施比例为 3.5:2.4:1。在高肥力区和低肥力区 N 的显著性最高,N 肥的增产效果最明显。不同土壤肥力类型适宜施肥量为:高肥力区 N 196.80 kg/hm²、 P_2O_5 131.55 kg/hm²、 K_2O 67.95 kg/hm²,中肥力区 N 198.90 kg/hm²、 P_2O_5 130.35 kg/hm²、 K_2O 69.30 kg/hm²,低肥力区 N 155.55 kg/hm²、 P_2O_5 159.75 kg/hm²、 K_2O 88.20 kg/hm²。

关键词: 玉米; "3414" 肥效试验; 全膜双垄沟播; 环县

中图分类号: S147.2; S513 文献标识码: A 文章编号: 1001-1463(2014)11-0045-02 doi:10.3969/j.issn.1001-1463.2014.11.017

环县位于甘肃省东部、庆阳市西北部,地处毛乌素沙漠边缘的黄土高原丘陵沟壑区,山大沟深,地形复杂,山、川、塬兼有,梁、峁、谷相间。为温带大陆性半干旱气候,气候凉爽,干旱少雨,年均降水量 400 mm 以下,气候、土壤均较适宜玉米的生长,尤其是 2006 年引进玉米全膜双垄沟播技术以来,玉米种植面积不断增加,现常年玉米种植面积基本在 6.5 万 hm² 左右[1]。县内土质大多为黄绵土,养分总体呈"氮少、钾较多、微量元素不足、有机质缺乏"的状况。为了进一步提高肥料利用效率,挖掘玉米生产潜力,环县农业技术推广中心于 2012 年进行了玉米全膜双垄沟播栽培测土配方施肥试验,现将结果报道如下。

1 材料与方法

1.1 供试材料

供试氮肥为尿素(含N≥46.4%),中国石油宁夏石化公司生产;供试磷肥为普通过磷酸钙(含P₂O₅12%),宁夏鲁西化工化肥有限公司生产;供试钾肥为硫酸钾(含K₂O 50%),俄罗斯凯多国际贸易发展有限公司生产。指示玉米品种为承单 20 号。

1.2 试验地概况

根据全县地形地貌特点及土壤养分状况,分高、中、低3个肥力等级,选取了塬地、川地、山地三大区块10个试验点,其中洪德乡1个,许

旗乡 3 个,环城镇 3 个,木钵镇 3 个。试验地点平均海拔 1 338 m,年均降水量为 342 mm,≥10 ℃ 有效积温平均为 3 167 ℃,主要土壤类型为黄绵土和黑垆土。试验前测定的各试验地耕层主要土壤养分情况与肥力等级见表 1。

表 1 试验地耕层主要土壤养分情况与肥力等级

试验点	рН	有机质	碱解氮	有效磷	速效钾	肥力
风业点	рп	(g/kg)	(mg/kg)	(mg/kg)	(mg/kg)	等级
环城镇-1	8.22	11.34	58	9.33	192	中
环城镇-2	8.31	11.69	46	7.23	105	低
环城镇-3	8.40	9.31	44	10.20	155	低
木钵镇-4	8.29	10.82	50	8.76	82	中
木钵镇-5	8.35	6.73	61	8.12	97	低
木钵镇-6	8.18	12.02	39	9.05	163	中
许旗乡-7	8.27	12.25	65	10.30	189	中
许旗乡-8	8.25	13.20	69	16.10	147	高
许旗乡-9	8.09	13.13	76	11.10	233	高
洪德乡-10	8.14	11.43	68	14.60	171	高

1.3 试验设计及实施方法

试验采用"3414"试验完全实施方案设计,选择氮、磷、钾3个因素,4个水平(表2),共14个处理[2~3]。3次重复,随机区组排列,小区面积21

表 2 "3414" 试验因子水平施肥量 kg/hm²

水平	N	P_2O_5	K_2O
0	0	0	0
1	75.0	37.5	30.0
2	150.0	75.0	60.0
3	225.0	112.5	90.0

收稿日期: 2014-07-28

基金项目: 甘肃省科技支撑计划(1104NKCA093)部分内容

作者简介:陈彦峰(1969—),男,甘肃环县人,高级农艺师,主要从事农业技术推广工作。E-mail: 21701023@qq.com

- [2] 王遵亲, 祝寿全, 俞仁培, 等. 中国盐渍土[M]. 北京: 科学出版社, 1993: 400-515.
- [3] 甘肃省土壤普查办公室. 甘肃土壤[M]. 北京: 中国农业出版社,1993.
- [4] 牛叔文,陈作芳.农业区域开发探索——甘肃省沿黄灌区农业综合开发研究[M].兰州:兰州大学出版社,
- 1998.
- [5] 荆向田. 白银高扬程灌区土壤次生盐渍化成因及改良措施[J]. 甘肃农业科技, 1997(10); 22-24.
- [6] 徐德辉. 甘肃河西走廊及沿黄灌区农业节水现状分析 [J]. 人民黄河, 2011, 33(11): 112-116.

(本文责编:杨 杰)

表 3 环县玉米"3414"试验玉米产量							kg/hm²			
	环城-1	环城-2	环城-3	木钵-4	木钵-5	木钵-6	许旗-7	许旗-8	许旗_9	洪德-10
$N_0P_0K_0$	3 537	2 563	3 248	5 182	5 025	5 007	4 056	4 023	4 032	4 047
$N_0P_2K_2$	5 202	3 910	4 836	5 804	5 5 1 0	5 638	5 858	5 870	5 888	5 882
$N_1P_2K_2$	5 829	4 946	5 858	6 756	6 399	6 465	6 813	6 852	7 098	6 585
$N_2P_0K_2$	5 528	4 473	5 127	7 490	7 376	7 358	6 224	6 202	6 234	6 252
$N_2P_1K_2$	8 050	6 804	7 503	9 130	9 024	9 206	9 153	9 042	9 020	9 056
$N_2P_2K_2$	8 288	6 976	7 740	10 800	10 725	10 282	9 363	9 362	9 291	9 352
$N_2P_3K_2$	8 052	6 824	7 570	10 268	9 164	9 314	9 141	9 042	9 110	9 020
$N_2P_2K_0$	6 976	5 739	6 441	10 288	9 658	9 664	7 816	7 936	7 820	7 894
$N_2P_2K_1$	8 258	6 920	7 762	10 394	9 789	9 782	9 312	9 351	9 322	9 274
$N_2P_2K_3$	8 385	6 984	7 869	10 050	9 676	9 486	9 378	9 428	9 448	9 456
$N_3P_2K_2$	8 604	6 962	7 872	9 537	9 351	9 082	9 342	9 322	9 450	9 284
$N_1P_1K_2$	6 369	5 967	6 698	5 703	5 562	5 810	6 5 5 6	6 441	6 566	6 543
$N_1P_2K_1$	6 128	5 720	5 626	6 294	5 985	6 018	7 053	6 978	6 812	6 920
$N_2P_1K_1$	8 300	6 970	7 869	10 431	9 950	9 990	9 238	9 276	9 402	9 188

m²。试验因子"0"水平不施肥,"2"水平指当地最佳施肥水平,"1"水平="2"水平×0.5,"3"水平="2"水平×1.5(该水平为过量施肥水平)。区组内土壤、地形等条件相对一致,试验区外设置保护行,各处理均不施其它肥料。

试验随机区组排列,不设重复,小区面积25 m² (5 m×5 m),所施尿素、普通过磷酸钙和硫酸钾按试验方案分小区称量,于 4 月 7 日一次性施入作基肥。4 月 8 日按全膜双垄沟播覆膜要求起垄覆膜,即宽垄为 70 cm,窄垄为 40 cm。山区于 4 月 26 日、旱塬区于 4 月 28 日、旱川区于 4 月 30 日人工点播,穴播 2 粒,每小区 150 株。其它田间管理措施与大田一致。9 月 29 日至 10 月 2 日收获。以每小区内所有玉米果穗称重计产。试验数据采用农业部《"3414"试验设计与数据分析管理系统2.0版》统计分析。

2 结果与分析

2.1 产量回归方程的建立

将各试验点的玉米产量结果(表3)按照 Y=b₀+b₁N+b₂P+b₃K+b₄NP+b₅NK+b₆PK+b₇N²+b₈P²+b₆K²模型进行回归分析,建立自变量 N、P、K与因变量产量(y)之间的回归方程。对各试验点的回归方程参数进行显著性检验,结果表明,环城镇-1、环城镇-2、环城镇-3、许旗乡-7、许旗乡-8、许旗乡-9、洪德乡-10共7个试验点达到显著水平和极显著水平,木钵镇-4、木钵镇-5和木钵镇-6这3个试验点的回归方程不显著。其中许旗乡-9的试验 R Square 值趋近于 1,其值为 0.961,方程线形关系强,变量对 y 的解释能力强,回归方程拟合数据好,可代表各试点作进一步分析。

2.2 最大施肥量与最佳施肥量

对各试验的三元二次方程进行求解,进行边际分析,得到相应的函数最大值作为最大施肥量,并求对应的偏导数和根据肥料成本算出最佳施肥量。由分析结果可知,当玉米产量最大时,最大施肥量的 N、P、K 配比为 3.8:2.5:1,最佳施肥量的 N、P、K 配比为 3.5:2.4:1。

由不同肥力区试验回归方程系数可知,在高、中肥力条件的回归方程中,三因素一次项回归系数以 N 最大、 P_2O_5 次之、 K_2O 最小,其显著性检验值也以 N 最大、 P_2O_5 次之、 K_2O 最小,并且 N 回归显著性接近显著水平,说明 N 的效应值最可靠。在低肥力条件下, N 的肥效远远高于 P_2O_5 和 K_2O 。按照高、中、低肥力区对最大和最佳施肥量统计结果(表 4),不同土壤肥力类型适宜施肥量为高肥力区 N 196.80 kg/hm², P_2O_5 131.55 kg/hm², F_2O_5 130.35 kg/hm², F_2O_5 155.55 kg/hm², F_2O_5 155.55 kg/hm², F_2O_5 159.75 kg/hm², F_2O_5 188.20 kg/hm²。

表 4 不同肥力区最大施肥量与最佳施肥量

肥力	施肥	施肌	玉米产量		
水平	水平	N	P_2O_5	K_2O	(kg/hm²)
高肥力	最大施肥量	216.75	130.05	64.80	9 745.5
中肥力	最大施肥量	219.90	124.20	63.75	9 730.5
低肥力	最大施肥量	200.85	171.15	77.55	8 182.5
高肥力	最佳施肥量	196.80	131.55	67.95	9 730.5
中肥力	最佳施肥量	198.90	130.35	69.30	9 729.0
低肥力	最佳施肥量	155.55	159.75	88.20	8 131.5

3 小结

- 1)在中高肥力条件下,环县玉米氮磷钾肥效重要性 从大到小依次为 N、 P_2O_5 、 K_2O_6 。肥效可靠性以 N 最高。在低肥力条件下,N 的肥效远高于 P_2O_5 、 K_2O_6
- 2)不同土壤肥力类型适宜施肥量为:高肥力区 N 196.80 kg/hm²、 P_2O_5 131.55 kg/hm²、 K_2O 67.95 kg/hm²,中肥力区 N 198.90 kg/hm²、 P_2O_5 130.35 kg/hm²、 K_2O 69.30 kg/hm²,低肥力区 N 155.55 kg/hm²、 P_2O_5 159.75 kg/hm² P_2O_5 159.75

参考文献:

- [1] 范玉宝. 环县全膜双垄沟播鲜食糯玉米栽培技术[J]. 甘肃农业科技, 2012(4): 31-34.
- [2] 王圣瑞,陈新平,高祥照,等."3414"肥料试验模型 拟合的探讨[J]. 植物营养与肥料学报, 2002, 8(4): 409-413.
- [3] 朱凤菊, 王丽萍, 刘 琦, 等. 崇信县全膜双垄沟玉 米 3414 肥效试验初报[J]. 甘肃农业科技, 2012(1): 31-34.

(本文责编:陈 珩)